Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
1.
Water Sci Technol ; 89(6): 1539-1553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557717

RESUMO

Prior to entering the water body, microplastics (MPs) are mostly collected at the sewage treatment plant and the biological treatment unit is the sewage treatment facility's central processing unit. This review aims to present a comprehensive analysis of the detrimental impacts of MPs on the biological treatment unit of a sewage treatment plant and it covers how MPs harm the effluent quality of biological treatment processes. The structure of microbial communities is altered by MPs presence and additive release, which reduces functional microbial activity. Extracellular polymers, oxidative stress, and enzyme activity are explored as micro views on the harmful mechanism of MPs on microorganisms, examining the toxicity of additives released by MPs and the harm caused to microorganisms by harmful compounds that have been adsorbed in the aqueous environment. This article offers a theoretical framework for a thorough understanding of the potential problems posed by MPs in sewage treatment plants and suggests countermeasures to mitigate those risks to the aquatic environment.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Microplásticos/toxicidade , Plásticos , Esgotos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
J Environ Sci (China) ; 142: 33-42, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527894

RESUMO

Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters. This study compares the performance of five different extraction phases in solid phase extraction (SPE), namely HLB, HLB+Coconut, C18 cartridge, C18 disk and Strata-X, and evaluated their chemical extracting efficiencies and biotoxicity outcomes. We quantitatively assessed cytotoxicity, acute toxicity, genotoxicity, estrogenic activity, and neurotoxicity of the extracts using in vitro bioassays and characterized the chemical extracting efficiencies of the SPE methods through chemical recoveries of 23 model compounds with different polarities and total organic carbon. Using Pareto ranking, we identified HLB+Coconut as the optimal SPE method, which exhibited the highest level of water sample biotoxicity and recovered the most chemicals in water samples. We found that the biotoxicity outcomes of the extracted water samples significantly and positively correlated with the chemical extracting efficiencies of the SPE methods. Moreover, we observed synchronous changing patterns in biotoxicity outcome and chemical extracting efficiencies in response to increasing sample volumes per cartridge (SVPC) during SPE. Our findings underscore that higher chemical extracting efficiency of SPE corresponds to higher biotoxicity outcome of environmental water samples, providing a scientific basis for standardization of SPE methods for adequate assessment of biotoxicities of environmental waters.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Água/química , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 925: 171682, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494012

RESUMO

Constructed wetlands (CWs) have been developed rapidly as a sustainable water treatment technique. However, the capability of CWs for remediating the contaminated water based on toxicity assessment remains largely unknown. Four surface flow CWs and two integrated surface-subsurface flow CWs, from five cities in central and eastern region of China were evaluated, concerning the adverse effects of effluents and the toxicity reduction efficiency. Human bone marrow mesenchymal stem cells (hBMSCs) were employed as a human relevant in vitro model. The influent extractions caused cytotoxicity in a dose-dependent manner. The non-cytotoxic dilutions of the influents enhanced the genotoxicity marker γ-H2AX and reactive oxygen species levels. In addition, the influent repressed the osteogenic and neurogenic differentiation, and stimulated the adipogenic differentiation. Cytotoxicity of the contaminated water was reduced by 54 %-86 % after treatment with CWs. CWs were effective to remove part of the sub-lethal effects, with lower reduction than cytotoxicity. The integrated biomarker response (IBR) value of the effluents from the six CWs is lower than that of four secondary and one tertiary wastewater treatment plants. The IBR of the six CWs influents were in the range of 8.6-10.6, with a reduction of 15-50 % after the pollution restoration in CWs. The two integrated surface-subsurface flow CWs achieved higher IBR removal than the four surface flow CWs, possibly due to improved treatment effects by the combined systems. Cytotoxic and genotoxic effects of polar fractions in the CW effluents were stronger than the medium-polar and the non-polar fractions. Besides, PPARγ agonists present in the effluents played crucial roles and ERα agonists may make modest contributions. The present study enhances understanding of the role of CWs in achieving safe wastewater reclamation and provides evidence for further improving toxicity reduction in CWs performance.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Humanos , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Águas Residuárias/toxicidade , Poluição da Água
4.
PLoS One ; 19(3): e0300800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512976

RESUMO

Mining wastewater with heavy metals poses a serious threat to the ecological environment. However, the acute single and combined ecological effects of heavy metals, such as chromium (Cr) and nickel (Ni), on freshwater ostracods, and the development of relevant prediction models, remain poorly understood. In this study, Heterocypris sp. was chosen to investigate the single and combined acute toxicity of Cr and Ni. Then, the quantitative structure-activity relationship (QSAR) model was used to predict the combined toxicity of Cr and Ni. The single acute toxicity experiments revealed high toxicity for both Cr and Ni. In addition, Cr exhibited greater toxicity compared to Ni, as evidenced by its lower 96-hour half-lethal concentration (LC50) of 1.07 mg/L compared to 4.7 mg/L for Ni. Furthermore, the combined acute toxicity experiments showed that the toxicity of Cr-Ni was higher than Ni but lower than Cr. Compared with the concentration addition (CA) and independent action (IA) models, the predicted results of the QSAR model were more consistent with the experimental results for the Cr-Ni combined acute toxicity. So, the high accuracy of QSAR model identified its feasibility to predict the toxicity of heavy metal pollutants in mining wastewater.


Assuntos
Metais Pesados , Níquel , Animais , Níquel/toxicidade , Níquel/análise , Cromo/toxicidade , Cromo/análise , Relação Quantitativa Estrutura-Atividade , Águas Residuárias/toxicidade , Metais Pesados/toxicidade , Metais Pesados/análise , Crustáceos , Monitoramento Ambiental
5.
Environ Pollut ; 348: 123799, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527585

RESUMO

Many pharmaceutical compounds end up in the environment due to incomplete removal by wastewater treatment plants (WWTPs). Some compounds are sometimes present in significant concentrations and therefore represent a risk to the aquatic environment. Furosemide is one of the most widely used drugs in the world. Considered as an essential drug by the World Health Organization, this powerful loop diuretic is used extensively to treat hypertension, heart and kidney failure and many other purposes. However, this important consumption also results in a significant release of furosemide in wastewater and in the receiving environment where concentrations of a few hundred ng/L to several thousand have been found in the literature, making furosemide a compound of great concern. Also, during its transport in wastewater systems and WWTPs, furosemide can be degraded by various processes resulting in the production of more than 74 by-products. Furosemide may therefore present a significant risk to ecosystem health due not only to its direct cytotoxic, genotoxic and hepatotoxic effects in animals, but also indirectly through its transformation products, which are poorly characterized. Many articles classify furosemide as a priority pollutant according to its occurrence in the environment, its persistence, its elimination by WWTPs, its toxicity and ecotoxicity. Here, we present a state-of-the-art review of this emerging pollutant of interest, tracking it, from its consumption to its fate in the aquatic environment. Discussion points include the occurrence of furosemide in various matrices, the efficiency of many processes for the degradation of furosemide, the subsequent production of degradation products following these treatments, as well as their toxicity.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Furosemida/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ecossistema , Poluentes Ambientais/análise , Monitoramento Ambiental , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos
6.
J Hazard Mater ; 469: 133959, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457977

RESUMO

We conducted a comprehensive assessment involving acute effects on 96-hour survival and biochemical parameters, as well as chronic effects on growth and reproduction spanning three generations of the marine mysid Neomysis awatschensis exposed to filtered wastewater to evaluate the potential impact of ship hull-cleaning wastewater on crustaceans. The analyzed wastewater exhibited elevated concentrations of metals, specifically zinc (Zn) and copper (Cu) and metal-based antifoulants, i.e., Cu pyrithoine (CuPT) and Zn pyrithoine (ZnPT). The results revealed dose-dependent reductions in survival rates, accompanied by a notable increase in oxidative stress, in response to the sublethal values of two wastewater samples: 1) mechanically filtered using the cleaning system (MF) and 2) additionally filtered in the laboratory (LF) for 96 h. Mysids exposed to MF displayed higher mortality than those exposed to LF. Furthermore, mysids subjected to continuous exposure of 0.001% LF across three generations exhibited significant inhibition of the feeding rate, more pronounced growth retardation along with an extended intermolt duration, and a diminished rate of reproduction compared to the control. A noteworthy inhibition of the feeding rate and growth was observed in the first generation exposed only to the LF sample. However, although the reproduction rate was not significantly affected. Collectively, these findings underscore the potential harm posed by sublethal concentrations of wastewater to the health of mysid populations under consistent exposure.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Metais/farmacologia , Crustáceos , Cobre/toxicidade , Zinco
7.
Ecotoxicol Environ Saf ; 273: 116120, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401200

RESUMO

The ability to employ waste products, such as vegetable scraps, as raw materials for the synthesis of new promising adsorbing materials is at the base of the circular economy and end of waste concepts. Dextrin-based nanosponges (D_NS), both cyclodextrin (CD) and maltodextrin (MD), have shown remarkable adsorption abilities in the removal of toxic compounds from water and wastewater, thus representing a bio-based low-cost solution which is establishing itself in the market. Nevertheless, their environmental safety for either aquatic or terrestrial organisms has been overlooked, raising concern in terms of potential hazards to natural ecosystems. Here, the environmental safety (ecosafety) of six newly synthesized batches of D_NS was determined along with their full characterization by means of dynamic light scattering (DLS), thermogravimetric analysis (TGA), Fourier transformed infrared spectroscopy with attenuated total reflection (FTIR-ATR) and transmission electron microscopy (SEM). Ecotoxicity evaluation was performed using a battery of model organisms and ecotoxicity assays, such as the microalgae growth inhibition test using the freshwater Raphidocelis subcapitata and the marine diatom Dunaliella tertiolecta, regeneration assay using the freshwater cnidarian Hydra vulgaris and immobilization assay with the marine brine shrimp Artemia franciscana. Impact on seedling germination of a terrestrial plant of commercial interest, Cucurbita pepo was also investigated. Ecotoxicity data showed mild to low toxicity of the six batches, up to 1 mg/mL, in the following order: R. subcapitata > H. vulgaris > D. tertiolecta > A. franciscana > C. pepo. The only exception was represented by one batch (NS-Q+_BDE_(GLU2) which resulted highly toxic for both freshwater species, R. subcapitata and H. vulgaris. Those criticalities were solved with the synthesis of a fresh new batch and were hence attributed to the single synthesis and not to the specific D_NS formulation. No effect on germination of pumpkin but rather more a stimulative effect was observed. To our knowledge this is the first evaluation of the environmental safety of D_ NS. As such we emphasize that current formulations and exposure levels in the range of mg/mL do not harm aquatic and terrestrial species thus representing an ecosafe solution also for environmental applications.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Dextrinas , Ecossistema , Plantas , Águas Residuárias/toxicidade , Artemia
8.
J Water Health ; 22(2): 278-289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421622

RESUMO

Wastewater treatment plants are mainly monitored for quality in terms of their biological oxygen demand and microbiological constituents as stipulated in the specific discharge permit. Wastewater influents and effluents were taken from three WWTPs in South Africa over the summer and winter seasons. Previous toxicity tests such as the Vibrio fischeri bioluminescence assay and the Selenastrum capricornutum algal growth inhibition test have shown that the effluents displayed acute toxicity. To further investigate the quality of the effluent, the genotoxic potential was determined using the SOS Chromosome and UMU Chromosome test. The SOS Chromotest demonstrated induction factor values of above 1.5 for influents during both seasons indicating that the influents were genotoxic (p < 0.05). Effluents discharged during winter and summer also had induction factors greater than 1.5 (p < 0.05). A range of induction factors was detected with the UMU-Chromotest for influents and effluents (1.98 ± 0.38 and 2.40 ± 0.51, respectively). Findings show point sources in the area can lead to influents and effluents that are potentially genotoxic. Designing a monitoring programme that encompasses testing of both the regulatory determinants with additional specialized tests can provide a more holistic view of wastewater quality and the efficiency of WWTP to reduce the discharge of hazards.


Assuntos
Dano ao DNA , Águas Residuárias , África do Sul , Águas Residuárias/toxicidade , Estações do Ano
9.
Environ Res ; 243: 117833, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056612

RESUMO

Advanced oxidation processes such as thermal plasma activation and UV-C/H2O2 treatment are considered as applications for the degradation of pharmaceutical residues in wastewater complementary to conventional wastewater treatment. It is supposed that direct oxidative treatment can lower the toxicity of hospital sewage water (HSW). The aim of this study was to predict the ecotoxicity for three aquatic species before and after oxidative treatment of 10 quantified pharmaceuticals in hospital sewage water. With the application of oxidative chemistry, pharmaceuticals are degraded into transformation products before reaching complete mineralization. To estimate the potential ecotoxicity for fish, Daphnia and green algae ECOSAR quantitative structure-activity relationship software was used. Structure information from pristine pharmaceuticals and their oxidative transformation products were calculated separately and in a mixture computed to determine the risk quotient (RQ). Calculated mixture toxicities for 10 compounds found in untreated HSW resulted in moderate-high RQ predictions for all three aquatic species. Compared to untreated HSW, 30-min treatment with thermal plasma activation or UV-C/H2O2 resulted in lowered RQs. For the expected transformation products originating from fluoxetine, cyclophosphamide and acetaminophen increased RQs were predicted. Prolongation of thermal plasma oxidation up to 120 min predicted low-moderate toxicity in all target species. It is anticipated that further degradation of oxidative transformation products will end in less toxic aliphatic and carboxylic acid products. Predicted RQs after UV-C/H2O2 treatment turned out to be still moderate-high. In conclusion, in silico extrapolation of experimental findings can provide useful predicted estimates of mixture toxicity. However due to the complex composition of wastewater this in silico approach is a first step to screen for ecotoxicity. It is recommendable to confirm these predictions with ecotoxic bioassays.


Assuntos
Gases em Plasma , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Esgotos , Peróxido de Hidrogênio/química , Água , Estresse Oxidativo , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
10.
Environ Res ; 241: 117547, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949288

RESUMO

Industrial wastewater effluents are a major source of chemicals in aquatic environments, and many of these chemicals may negatively impact aquatic life. In this study, the crustacean Daphnia magna, a common model organism in ecotoxicity studies, was exposed for 48 h to nine different industrial effluent samples from manufacturing facilities associated with the production of plastics, polymers, and coating products at a range of dilutions: 10, 25, 50, 100% (undiluted). A targeted metabolomic-based approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify polar metabolites from individual daphnids that survived the 48 h exposure. Multivariate analyses and metabolite changes revealed metabolic perturbations across all effluent samples studied, with non-monotonic responses and both up and downregulation relative to the unexposed control. Pathway analyses indicated the disruption of similar and distinct pathways, mostly connected to protein synthesis, amino acid metabolism, and antioxidant processes. Overall, we observed disruptions in Daphnia biochemistry that were similar across the effluent samples, but with unique features for each effluent sample. Additionally, non-monotonic heightened responses suggested additive and/or synergistic interactions between the chemicals within the industrial effluents. These findings demonstrate that targeted metabolomic approaches are a powerful tool for the biomonitoring of aquatic ecosystems in the context of complex mixtures, such as industrial wastewater effluents.


Assuntos
Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Antioxidantes/metabolismo , Polímeros , Aminoácidos/metabolismo , Cromatografia Líquida , Ecossistema , Espectrometria de Massas em Tandem , Metabolômica , Daphnia , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 912: 169110, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065506

RESUMO

Pharmaceuticals and personal care products (PPCPs) are frequently detected in marine environments, posing a threat to aquatic organisms. Our previous research demonstrated the occurrence of neuroactive compounds in effluent and sediments from a wastewater treatment plant (WWTP) in a fjord North of Stavanger, the fourth-largest city in Norway. To better understand the influence of PPCP mixtures on fish, Atlantic cod (Gadus morhua) were caged for one month in 3 locations: site 1 (reference), site 2 (WWTP discharge), and site 3 (6.7 km west of discharge). Transcriptomic profiling was conducted in the brains of exposed fish and detection of PPCPs in WWTP effluent and muscle fillets were determined. Caffeine (47.8 ng/L), benzotriazole (10.9 ng/L), N,N-diethyl-meta-toluamide (DEET) (5.6 ng/L), methyl-1H-benzotriazole (5.5 ng/L), trimethoprim (3.4 ng/L), carbamazepine (2.1 ng/L), and nortriptyline (0.4 ng/L) were detected in the WWTP effluent. Octocrylene concentrations were observed in muscle tissue at all sites and ranged from 53 to 193 ng/g. Nervous system function and endocrine system disorders were the top enriched disease and function pathways predicted in male and female fish at site 2, with the top shared canonical pathways involved with estrogen receptor and Sirtuin signaling. At the discharge site, predicted disease and functional responses in female brains were involved in cellular assembly, organization, and function, tissue development, and nervous system development, whereas male brains were involved in connective tissue development, function, and disorders, nervous system development and function, and neurological disease. The top shared canonical pathways in females and males were involved in fatty acid activation and tight junction signaling. This study suggests that pseudopersistent, chronic exposure of native juvenile Atlantic cod from this ecosystem to PPCPs may alter neuroendocrine and neuron development.


Assuntos
Cosméticos , Gadus morhua , Poluentes Químicos da Água , Purificação da Água , Animais , Feminino , Encéfalo , Cosméticos/toxicidade , Cosméticos/análise , Ecossistema , Monitoramento Ambiental , Perfilação da Expressão Gênica , Preparações Farmacêuticas , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Masculino
12.
J Hazard Mater ; 463: 132839, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926015

RESUMO

Shale gas hydraulic fracturing generates flowback waters that pose a threat to aquatic organisms if released into the environment. In order to prevent adverse effects on aquatic ecosystems, multiple lines of evidence are needed to guide better decisions and management actions. This study employed a multi-disciplinary approach, combining direct toxicity assessment (DTA) on the water flea Daphnia carinata and LC-MS metabolomics analysis to determine the impact of a major ion salinity control (SC) and a cumulative flowback shale gas wastewater (SGW) from a well in the Beetaloo Sub-basin, Northern Territory, Australia. The exposures included a culture water control, simply further referred to as 'control', SC at 1% and 2% (v/v) and SGW at 0.125, 0.25, 0.5, 1% and 2% (v/v). The results showed that reproduction was significantly increased at SGW 0.5%, and significantly decreased when exposed to SC 2%. SGW 2% was found to be acutely toxic for the D. carinata (< 48-h). Second generation (F1) of D. carinata exposed to 0.125-1% SGW generally saw reduced activity in four oxidative biomarkers: glutathione S-transferase, lipid peroxidation, reactive oxygen species, and superoxide dismutase. At the metabolomics level, we observed significant changes in 103 metabolites in Daphnia exposed to both SGW and elevated salinity, in comparison to the control group. These changes indicate a range of metabolic disturbances induced by SGW and salinity, such as lipid metabolism, amino acid metabolism, nucleotide synthesis, energy production, and the biosynthesis of crucial molecules like hormones and pigments. These multiple lines of evidence approach not only highlights the complexities of SGW's impact on aquatic ecosystems but also underscores the importance of informed decision-making and management practices to safeguard the environment and its inhabitants.


Assuntos
Cladóceros , Fraturamento Hidráulico , Poluentes Químicos da Água , Animais , Gás Natural/análise , Daphnia , Águas Residuárias/toxicidade , Ecossistema , Poluentes Químicos da Água/análise
13.
Reprod Toxicol ; 124: 108533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160783

RESUMO

Human health effects can arise from unregulated manual disassembly of electronic waste (e-waste) and/or hydraulic fracturing fluid spills. There is limited literature on the effects of e-waste and hydraulic fracturing wastewater exposure on the male reproductive system. Thus, this proof-of-concept study begins to address the question of how wastewater from two potentially hazardous environmental processes could affect sperm quality. Therefore, three groups of eight-week-old adult mice were exposed (5 d/wk for 6 wks) via a mealworm (Tenebrio molitor and Zophabas morio) feeding route to either: (1) e-waste leachate (50% dilution) from the Alaba Market (Lagos, Nigeria); (2) West Virginia hydraulic fracturing flowback (HFF) fluid (50% dilution); or, (3) deionized water (control). At 24-hours (hr), 3 weeks (wk), or 9-wk following the 6-wk exposure period, cohorts of mice were necropsied and adverse effects/persistence on the male reproductive system were examined. Ingestion of e-waste leachate or HFF fluid decreased number and concentration of sperm and increased both chromatin damage and numbers of morphological abnormalities in the sperm when compared to control mice. Levels of serum testosterone were reduced post-exposure (3- and 9-wk) in mice exposed to e-waste leachate and HFF when compared to time-matched controls, indicating the long-term persistence of adverse effects, well after the end of exposure. These data suggest that men living around or working in vicinity of either e-waste or hydraulic fracturing could face harmful effects to their reproductive health. From both a human health and economic standpoint, development of prevention and intervention strategies that are culturally relevant and economically sensitive are critically needed to reduce exposure to e-waste and HFF-associated toxic contaminants.


Assuntos
Resíduo Eletrônico , Fraturamento Hidráulico , Poluentes Químicos da Água , Masculino , Humanos , Animais , Camundongos , Resíduo Eletrônico/efeitos adversos , Águas Residuárias/toxicidade , Nigéria , Sêmen/química , Genitália Masculina , Poluentes Químicos da Água/toxicidade
14.
Environ Res ; 245: 118041, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160973

RESUMO

In recent years, there has been a growing focus on treating textile wastewater due to its escalating threat to aquatic ecosystems and exposed communities. The present study investigates the adsorption efficacy of biopolymer functionalized nanoscale zero-valent iron (CS@nZVI) composite for the treatment of textile wastewater using the RSM-CCD model. The structure and morphology of CS@nZVI were characterized using XRD, FTIR, FESEM, and EDX. CS@nZVI was then evaluated for its adsorption potential in removing COD, color, and other physico-chemical parameters from textile wastewater. The results showed the high efficacy of CS@nZVI for COD and color removal from textile wastewater. Under optimal conditions (pH 6, contact time 60 min, and 1.84 g CS@nZVI), COD removal reached a maximum of 85.53%, and decolorization efficiency was found to be 89.73%. The coefficient of determination R2 (0.98) and AIC (269.75) values suggested quadratic model as the best-fitted model for optimizing the process parameters for COD removal. Additionally, the physico-chemical parameters were found to be within permissible limits after treatment with CS@nZVI. The influence of coexisting ions on COD removal followed the order PO43- > SO42- > Cl- >Na+ > Ca2+. The kinetics data fitted well with the pseudo-first-order reaction, indicating physisorption as the primary mechanism. The thermodynamic study revealed the endothermic nature of the removal process. Reusability tests demonstrated that great regeneration capacity of spent CS@nZVIafter five consecutive cycles. Furthermore, toxicological studies showed reduced toxicity in treated samples, leading to improved growth of Vigna radiata L. These findings suggest that CS@nZVI bionanocomposites could serve as an efficient, cost-effective, and eco-friendly remediation agent for the treatment of textile effluents, presenting significant prospects for commercial applications.


Assuntos
Quitosana , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Quitosana/química , Ecossistema , Poluentes Químicos da Água/análise , Têxteis , Adsorção
15.
Sci Total Environ ; 912: 169226, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101627

RESUMO

Recent screening surveys have shown the presence of unknown source halogenated organic compounds (HOCs) in shale gas wastewater. However, their occurrence, profile, transport in surrounding surface water and environmental risk potentials remain unclear. Here, a method for the extraction and quantitative determination of 13 HOCs in water by solid phase extraction combined with gas chromatography-mass spectrometry (GC-MS) was established. All of the targeted HOCs were detected and peaked at the outfall, while these contaminants were generally not detected in samples upstream of the outfall, suggesting that these contaminants originated from the discharge of shale gas wastewater; this was further supported by the fact that these pollutants were generally detected in downstream samples, with a tendency for pollutant concentrations to decrease progressively with increasing distance from the outfall. However,different HOCs had different transport potential in water. In addition, the toxicological effects of typical HOCs were evaluated using HepG2 as a model cell. The results indicated that diiodoalkanes suppressed HepG2 cell proliferation and induced ROS generation in a concentration-dependent manner. Mechanistic studies showed that diiodoalkanes induced apoptosis in HepG2 cells via the ROS-mediated mitochondrial pathway, decreasing mitochondrial membrane potential and increasing intercellular ATP and Ca2+ levels. On the other hand, RT-qPCR and Western blot assays revealed that the SLC7A11/GPX4 signaling pathway and HO-1 regulation of ferritin autophagy-dependent degradation (HO-1/FTL) pathway were involved in the ferroptosis pathway induced by diiodoalkane in HepG2 cells. Our study not only elucidates the contamination profiles and transport of HOCs in surface water of typical shale gas extraction areas in China, but also reveals the toxicity mechanism of typical diiodoalkane.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Gás Natural/análise , Espécies Reativas de Oxigênio/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Compostos Orgânicos , Água/análise , China
16.
Ecotoxicology ; 32(10): 1257-1271, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062282

RESUMO

The possible impact of ZnO and CuO nanoparticles (NPs) (individually and in binary mixture) was investigated using the freshwater microalgae, Scenedesmus obliquus. The present study shows the effect of nanoparticles on algae in OECD growth media, wastewater, and pond water during a 96-h toxicity test. At 0.1 mg/L concentration of the mixture of NPs, the reduction in the chlorophyll a content was 13.61 ± 1.34% (OECD media), 28.83 ± 1.85% (wastewater), and 31.81 ± 2.23% (pond water). Values of reduction in biomass were observed to be 42.13 ± 1.38, 39.96 ± 1.03, and 33.10 ± 1.29% for OECD media, wastewater, and pond water, respectively. The highest increase in lipid values was observed in the case of pond water (6.3 ± 1.31%). A significant increase in the value of EPS-generated protein was observed in the wastewater sample. EPS-generated carbohydrate values were increased in OECD media but decreased in the wastewater matrix. The transmission electron microscope images showed structural damage to algae cells due to the exposure to a mixture of nanoparticles at higher concentrations. Fourier transform infrared analysis showed an addition of bonds and differences in the peak and its intensity during exposure to high concentrations of NPs. Overall, this study gives fundamental insights into the interaction and toxicity of a mixture of NPs to algal species in different water matrices.


Assuntos
Microalgas , Nanopartículas , Scenedesmus , Poluentes Químicos da Água , Águas Residuárias/toxicidade , Clorofila A/farmacologia , Organização para a Cooperação e Desenvolvimento Econômico , Lagoas , Nanopartículas/toxicidade , Nanopartículas/química , Água Doce , Água/farmacologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
17.
Environ Res ; 239(Pt 2): 117275, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827363

RESUMO

The occurrence of antibiotic residues in diverse water sources has long been acknowledged as a potential health concern due to the emergence and spread of antibiotic-resistant bacteria and genes. However, there have been limited studies into the presence of antibiotic-metal complexes (AMCs) in real-time wastewater matrices, and their impact on wastewater microbial communities. The present work, in this regard, investigated the stability of Imipenem-metal complexes (Me = Mg (II), Ca (II), Fe (II), Cu (II), and Al (III)) with computational studies, stoichiometry with potentiometric measurements, and their antibacterial activity towards wastewater model microorganisms- Bacillus subtilis (B. subtilis) and Escherichia coli (E. Coli) by Colony Forming Unit (CFU) method. The lower energy of Imipenem-metal complexes than the parent antibiotic- Imipenem, during energy optimization using density functional (DFT) methods, revealed that metal interactions of Imipenem stabilize the drug by minimizing its energy. Further, CFU studies indicated that these complexes display higher antimicrobial activity than parent antibiotics. The electron delocalization over the entire chelated system (AMCs) reduces polarity and increases the lipophilicity of the complexes, thereby facilitating stronger interaction between AMCs and the bacterial cell membrane. Results indicate increased antibacterial activity of Imipenem-metal complexes for both E. coli and B. subtilis. The antibacterial activity, was however, more pronounced in B. subtilis, with >97% growth inhibition for metal complexes of Imipenem (at a Minimum Inhibitory Concentration of 20 nM or 6 ppb (i.e., MIC90)), for both the stoichiometric ratios (metal to ligand) ratios (M: L 1: 1 and 2: 1). All around, with increased stability and toxicity, AMCs are emerging as contaminants of concern and demand immediate attention to devise methods for their removal.


Assuntos
Complexos de Coordenação , Imipenem , Imipenem/toxicidade , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Águas Residuárias/toxicidade , Escherichia coli , Antibacterianos/toxicidade , Antibacterianos/química , Metais/química , Bactérias/metabolismo , Testes de Sensibilidade Microbiana
18.
J Water Health ; 21(9): 1357-1368, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37756201

RESUMO

The widespread presence of contaminants of emerging concern (CEC) in surface waters, treated wastewater and drinking water is an ongoing issue for the water industry. The absence of regulatory guidance and limited occurrence, toxicity and removal data are defining criteria of CEC and make it difficult to prioritise which CEC pose the greatest risk. The online Emerging CHemIcals Database for National Awareness (ECHIDNA) aims to classify and prioritise CEC based on their potential risk, with the information presented in an easily accessible and intuitive manner. A candidate list of almost 1,800 potential CEC, including pesticides, pharmaceuticals and industrial compounds, was compiled using both Australian and international resources. These were ranked based on in silico assessment of their persistent, bioaccumulative and toxic (PBT) properties, as well as potential chronic toxicity hazard, yielding 247 CEC for further prioritisation. Risk Quotients (RQ) identified between 5 and 87 CEC posing a risk to human and ecosystem health, respectively, across drinking water, surface water, treated wastewater and raw wastewater. While the ability of the water industry to effectively prioritise CEC is limited by candidate identification and data availability, ECHIDNA can provide valuable information for better decision-making surrounding CEC management.


Assuntos
Água Potável , Tachyglossidae , Humanos , Animais , Ecossistema , Águas Residuárias/toxicidade , Austrália
19.
Sci Rep ; 13(1): 16287, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770590

RESUMO

In this research, the photocatalytic degradation of CIP from aqueous solutions using CQD decorated on N-Cu co-doped titania (NCuTCQD) was made during two synthesis steps by sol-gel and hydrothermal methods. The fabricated catalysts were analyzed using various techniques, including XRD, FT-IR, BET, FESEM, EDX, and DRS. The results showed that N and Cu atoms were doped on TiO2 and CQD was well deposited on NCuT. The investigation of effective operational parameters demonstrated that the complete removal of ciprofloxacin (CIP: 20 mg/L) could be achieved at pH 7.0, NCuTCQD4wt%: 0.8 g/L, and light intensity: 100 mW/cm2 over 60 min reaction time. The O2•- and OH˙ radicals were identified as the primary reactive species during the decontamination process. The synthesized photocatalyst could be recycled after six consecutive cycles of CIP decomposition with an insignificant decrease in performance. Pharmaceutical wastewater was treated through the optimum degradation conditions which showed the photocatalytic degradation eliminated 89% of COD and 75% of TOC within 180 min. In the effluent toxicity evaluation, the EC50 values for treated and untreated pharmaceutical wastewater increased from 62.50% to 140%, indicating that the NCuTCQD4wt%/Vis system can effectively reduce the toxic effects of pharmaceutical wastewater on aquatic environments.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/toxicidade , Águas Residuárias/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Luz , Catálise , Preparações Farmacêuticas
20.
Ecotoxicology ; 32(7): 858-873, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37633869

RESUMO

Soil contamination with micropollutants is an important global problem and the impact of these pollutants on living organisms cannot be underestimated. The effects of diclofenac (DCF) and sulfamethoxazole (SMX), their mixture (MIX), and wastewater containing these drugs on the mortality and reproduction of Eisenia fetida were investigated. The impact on the activities of antioxidant enzymes in earthworm cells was also assessed. Furthermore, the influence of the following parameters of the vertical flow constructed wetlands on wastewater toxicity was investigated: the dosing system, the presence of pharmaceuticals and the plants Miscanthus giganteus. The compounds and their mixture significantly affected the reproduction and mortality of earthworms. The calculated values of LC50,28 days values were 3.4 ± 0.3 mg kg-1 for DCF, 1.6 ± 0.3 mg kg-1 for SMX, and 0.9 ± 0.1 mg kg-1 for MIX. The EC50 (reproduction assay) for DCF was 1.2 ± 0.2 mg kg-1, whereas for SMX, it was 0.4 ± 0.1 mg kg-1, and for MIX, it was 0.3 ± 0.1 mg kg-1, respectively. The mixture toxicity index (MTI) was calculated to determine drug interactions. For both E. fetida mortality (MTI = 3.29) and reproduction (MTI = 3.41), the index was greater than 1, suggesting a synergistic effect of the mixture. We also observed a negative effect of wastewater (raw and treated) on mortality (32% for raw and 8% for treated wastewater) and fertility (66% and 39%, respectively) of E. fetida. It is extremely important to analyze the harmfulness of microcontaminants to organisms inhabiting natural environments, especially in the case of wastewater for irrigation of agricultural fields.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Diclofenaco/toxicidade , Águas Residuárias/toxicidade , Sulfametoxazol/toxicidade , Áreas Alagadas , Fertilidade , Solo , Estresse Oxidativo , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...